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A relationship between the quantum phase shift due to an external field in an 
(infinitesimal) two-beam interference experiment and the classical transverse 
acceleration, previously given by the author, is generalized covariantly and the 
phase shift associated with the longitudinal acceleration is deduced. This 
relation implies that the mass of a spinless elementary particle is a constant of 
motion, even in the presence of external fields in a curved space-time. Also 
according to this relation, the infinitesimal Aharonov-Bohm effect is equivalent 
to the Lorentz force law. The ease of a charged particle moving in the 
electromagnetic field due to electric and magnetic charges obeying Dirac's 
quantization condition is treated and a prescription is given for constructing its 
quantum mechanical wave function directly from the classical equation of 
motion, using path integrals, without requiring a knowledge of the Lagrangian 
or Hamiltonian of the interaction. Generalization to an arbitrary gauge field is 
briefly considered and a theorem is proven which implies that the holonomy 
transformations (path-ordered operators that parallel transport around closed 
curves) at an arbitrary space-time point contain all the gauge-invariant informa- 
tion of a gravitational or gauge field connection. 

1. I N T R O D U C T I O N  

The impor tance  of the phase difference between two interfer ing 
coherent  beams in de te rmin ing  the mot ion  of spinless particles has been  

recognized implicit ly and  explicitly by  m a n y  authors.  Indeed,  this forms 
the basic physical idea beh ind  F e y n m a n ' s  pa th  integral fo rmula t ion  of 
q u a n t u m  mechanics.  Accord ing  to F e y n m a n  (1948) the ampl i tude  K ( x , x ' )  
for a particle to propagate  f rom one space-t ime poin t  x '  to another  x can  
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be expressed as a sum of the amplitudes exp[(i/h)Sv(x, x')] associated with 
all possible paths T connecting x'  to x: 

K(x,x')~ • exp[ (i/h)Sv(x,x') ] (1.1) 
Y 

where Sy/h may be thought of as the phase associated with the path V. 
S v, according to Feynman, is the classical action associated with the 

path y. This prescription therefore provides a method of quantizing a 
classical theory that can be obtained from an action principle. Conversely, 
if the propagator K(x, x') for the quantum theory is given in the form of 
(1.1), in the classical limit when Sv/h becomes very large, as pointed out 
by Feynman, the path for which Sy is stationary and its neighboring paths 
make the major contribution to the amplitude. This path may therefore be 
regarded as the classical trajectory. Thus Feynman's formalism provides a 
clear intuitive connection between the classical theory and the quantum 
theory in cases where the classical theory is obtainable from an action 
principle. 

In a previous paper (Anandan, 1977) a relationship between the phase 
shift for interference between beams along two paths enclosing an infini- 
tesimal spatial area and the classical transverse acceleration, due to an 
external field, was given. This raises the question of whether Feynman's 
scheme of quantization can be extended to more general cases where a 
system has a classical equation of motion which may or may not be 
derivable from an action principle. Apart from raising this possibility, the 
above-mentioned relation has some intrinsic merit because it provides a 
very intuitive connection between classical physics and quantum physics 
and also treats in a unified manner the phase shifts due to different 
interactions. It therefore deserves further investigation, which is the major 
objective of the present paper. 

An outline of the present paper is as follows. In Section 2, the 
above-mentioned relationship between the phase shift in quantum inter- 
ference and the classical transverse acceleration is covariantly generalized 
in curved space-time and the phase shift associated with the longitudinal 
acceleration is deduced. This general relationship implies that the mass of 
a spinless elementary particle is a constant of motion even in the presence 
of external fields. It is shown also that a particle which undergoes the 
Aharonov-Bohm (1959) effect 2 in quantum interference must obey the 

2By the Aharonov-Bohm effect in this paper, we simply mean the phase shift in quantum 
interference due to the electromagnetic field, which need not vanish along the interfering 
beams. This is a generalization of the usual Aharonov-Bohm effect in which the field is 
assumed to vanish along the beams. 
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Lorentz force law in the classical limit and vice versa (infinitesimally), in 
an external field described by a skew symmetric tensor Fab that need not 
obey Maxwell's equations. In particular this allows, in Section 3, for the 
formulation of the quantum theory of a charged particle, in the presence of 
an electromagnetic field due to magnetic and electric charges obeying 
Dirac's quantization rule, directly from the classical equation of motion 
without requiring a classical Lagrangian or action principle for the interac- 
tion. In the process of doing this we also give a derivation of Dirac's 
quantization rule that does not introduce strings. A possible generalization 
of our propagator to arbitrary gauge fields using path-ordered operators 
around closed curves (holonomy transformations) is suggested. A theorem 
is proved in the Appendix which implies that these path-ordered operators 
contain all the gauge-invariant information of the field. 

2. THE C O R R E S P O N D E N C E  PRINCIPLE 

We shall call a system which exhibits both wave and particle proper- 
ties a quantum mechanical system, as opposed to systems that are purely 
wave or purely particle, which are examples of classical systems. An 
electron, for instance, is a quantum mechanical system: when it passes 
through a cloud chamber it leaves evidence of a particle trajectory, 
whereas on the other hand, it undergoes interference and diffraction which 
are characteristic of waves. The main purpose of this paper is to relate 
these two aspects of a quantum mechanical system by investigating the 
connection between interference and classical trajectories. We shall begin 
by assuming that space-time is a four-dimensional differentiable manifold. 3 
In the absence of any external fields (other than gravity) we shall also 
suppose that the motion of a quantum mechanical system is governed by a 
propagator of the form (1.1), which may be regarded as a formal way of 
stating Huygen's principle, which determines the evolution of the 
associated wave by its interference with itself. The difference between the 
phases associated with two arbitrary paths joining x and x'  in (1.1) will be 
called the phase difference between these two paths. We shall assume that 

alt may appear that it is not necessary to make this assumption. We could instead begin with 
space-time M as a set of points called events. Experience suggests that M has a topological 
structure such that the wave function is a continuous function on M with respect to this 
topology, for all states of motion of any particle. The four dimensionality of space-time is a 
consequence of this topology. It also appears from experience that M has a differentiable 
structure such that the wave functions are differentiable functions on M. This makes M a 
differentiable manifold. But this procedure is unsatisfactory because the measurement 
process shows that the value of the wave function at an event has no reality. See Anandan 
(1980). 
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an external field changes the phase difference AX in the absence of any 
field to A X + Aq~, where Aq, is called the phase shift due to the field. This is 
a weaker assumption than the usual assumption which provides a prescrip- 
tion for the change in phase along each path joining x and x'  due to the 
external field. As we shall see in the next section, the former assumption is 
sufficient to determine the modifications of the motion of the system in the 
presence of the external field. Moreover, for the electromagnetic field, for 
instance, it is gauge invariant, unlike the latter assumption. This will enable 
us to obtain the new quantum mechanical motion directly from the 
classical equation of motion, which is also gauge invariant. In order to do 
this we shall first obtain a relation between the phase shift for two paths 
infinitesimally close to each other and the classical equation of motion. 

We define a classical trajectory to be a curve such that AX+Aq~ 
between this curve and all neighboring curves is zero to first order in the 
variation. In the absence of any external field other than gravity (Aq~ = 0), 
the classical trajectories associated with different massive particles are the 
same, which is one way of stating the equivalence principle in the classical 
limit. There exists also another class of classical trajectories associated with 
massless particles, which is also independent of which massless particle is 
being considered. This suggests that these classical particles represent an 
objective geometrical structure of space-time. It is also known that under 
reasonable assumptions there exists a pseudo-Riemannian metric gab of 
signature ( + -  - - ) ,  unique up to an overall factor, such that the above 
two classes of curves are, respectively, the timelike and null geodesics with 
respect to this metric. (Weyl, 1921; Marzke and Wheeler, 1964; Ehlers, 
Pirani, and Schild, 1972). The existence of such a metric will be assumed 
from now on. 

Now, an external field would give a nonzero phase shift Aq~ and hence 
cause a deviation of the classical trajectory from the geodesic curve. For  
simplicity consider first the classical path of a particle in three-dimensional 
space, as seen from a local inertial frame. This path may be regarded as an 
appropriate projection on a spacelike hypersurface of its classical trajec- 
tory in space-time. Hence in the absence of an external field this path will 
be locally a straight line. Suppose that an external field is now "turned 
on," causing a curvature in the classical path of the particle. Then 
according to the above considerations this curvature is associated with the 
phase shift in quantum interference due to the external field. Using 
essentially this idea, the following relativistic relation between the phase 
shift and the classical transverse acceleration was obtained in a previous 
paper (Anandan, 1977; see also Feynman, 1964): 

mAy( dv • / dt) 
Aep• = hv (2.1) 
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Fig. 1. The connection between the phase shift in a two-beam interference and the classical 
transverse acceleration due to an external field. The external field causes a phase shift 
between the interfering beams shown schematically by acb and adb so that constructive 
interference occurs at b which is on the classical path ab through a. The spatial axes ax, ay 
emphasize that the classical path is the projection on the x - y  plane of a classical trajectory in 
space-time. 

where Ace• is the phase shift due to the external field, associated with two 
curves that span the infinitesimal area A,  d v x / d t  is the component of the 
acceleration perpendicular to the velocity, in the plane of interference 
which contains v, m is the mass, and 3'---(1- v2/c2)  - 1/2 (see Figure 1). By 
A being infinitesimal, we mean that (2.1) is valid only in a limiting sense. A 
more precise statement of (2.1) is 

mar( av • / at) 
v ~ •  --->h as/--->0 and a-->0 (2.1') 

where I is the length and a the angle indicated in Figure 1. All equations in 
which Ace appears in this section should be understood as being valid in 
such a limiting sense. There can exist, however, special cases in which these 
equations are valid for a finite area so long as the variation of the field 
over this area is negligible. An example of this kind is the Aharonov-  
Bohm effect, which will be considered later. 

There is also a phase s h i f t  Acell corresponding to the longitudinal 
a c c e l e r a t i o n  dVll/~dr (component of acceleration parallel to velocity), for an 
appropriate experiment done in space-time (Figure 2). The covariant 
generalization of (2.1) in curved space-time, which will give both phase 
shifts and include also the case when the particle is massless, as will be 
seen later, is 

C ab OPa (2 .2)  
Acev b = -f2 d~ 

where v a= dxa/ds is the 4-velocity, p a is the 4-momentum, D / D s  denotes 
covariant differentiation with respect to an affine parameter along the 
worldline of a classical particle, and ACe is the phase shift due to the 
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Fig. 2. A schematic diagram of an experiment in which earn B 0 is split into two beams B~ and 
B 2 by a half-reflecting mirror whose world line is M. B 1 and B 2 after reflection by the mirrors 
M 1 and M 2 interfere on M. M1, M2, and M are at rest in an inertial coordinate system whose 
time axis and a distance axis are denoted by t,x. An external field is present so as to cause a 
phase shift A4, between the interfering beams and a corresponding longitudinal acceleration in 
the classical trajectory C. 

external field between the interfer ing beams spann ing  the inf ini tesimal  
surface element  represented by  do ab, which must  conta in  v a (Figure 3). 
Since do ab contains  v", we can  write 

d o  ab = u[a l) b ] (2.3) 

where u ~ is an  inf ini tesimal  vector whose direct ion is arbi t rary  so long as it 
is not  parallel  to v ~. In  special cases, A~ in  (2.2) can  be identified with the 
phase shift in  a suitable two-beam interference experiment.  Equa t ion  (2.2) 

together with (2.3) can be regarded as a correspondence principle between 
classical physics and  q u a n t u m  physics. 

It follows from (2.2) and  (2.3) that  

v a - - ~  ~ ----0 (2.4) 

Hence the 4-force fa  __ Dp a/Ds experienced by a particle which obeys (2.2) 
must  always be no rma l  to the 4-velocity. Fo r  spinless e lementary particles 
we may  also suppose that  pa= mv a, where m by  defini t ion is the mass of 
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Fig. 3. C represents the classical trajectory of a particle and l) a is the 4-velocity at a point a 
on C. The curvature of the classical trajectory is related by equation (2.2) to the phase shift 
between interfering beams  acb, adb, where b is a point on the classical trajectory and  a, b, c 
and  d are infinitesimally close to each other. 

the particle. Then  f rom (2.4), 

Dm / Ds = 0 (2.5) 

i.e., the mass of  a spinless e lementary  particle should be a constant  of  
motion.  4 

If  t a is any vector  such that  vatav~O, then f rom (3.2), 

c doab(DpJDs)tb (vCtc4=O) (2.6) 
A4' = -h v ctc 

If  the particle has a time like 4-velocity v ~, we can  choose t a to be v ~ and  
obtain  

A*=-~doab-~sl.) b (UC/gc = l )  ( 2 . 7 )  

4In flat space-time, in the absence of any  external field, Poincar6 invariance guarantees that 
mass  is a constant  of motion. This need not  be the case if there is a gravitational or some 
other field. (2.2) implies that for a spinless elementary particle (i.e., a particle whose mot ion  
is described by a single complex scalar funct ion of space-time), the mass  mus t  be a constant.  
It  is possible to generalize (2.2) so that  the mass  is not  a constant  of motion. But it would be 
artificial to do so. 
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If tachyons exist it is possible in principle to do an interference experiment 
with them. In this case, 

- d o ~  (v~G = -- 1) (2.8) 

For massless particles, however, A~ must be obtained from the more 
general relation (2.2) or (2.6). 

From (2.2) we shall derive now (2.1) and also the phase shift due to 
longitudinal acceleration mentioned earlier. Consider first a massive spin- 
less elementary particle for which (2.7) is valid and choose a local inertial 
coordinate system in which D/Ds  is the same as the ordinary derivative 
d/ds. Also this coordinate system can be chosen such that, without loss of 
generality, in this coordinate system 

va = 3,(1, ~ ,0 ,0)  

dp a d12am3,2(~dt~tl dl~ll dt~.l_ ) 
ds - m ds c 2 3'2 ' - -  . . . .  dt '3,2 dt ' dt '0 (2.9) 

where 3,•(1--V2/C2) -1/2 and dvlJdt is the component of acceleration 
parallel to velocity. Substitute (2.9) into (2.7). Since do ab contains v a, 
do21/do 2~ v/c ,  and so one obtains 

Adp----- mA3, dr• m3, 3 Y~ dVll 
hv + --ff-c at 

where A = d o  12 and ~.=do Ol. Noticing now that m3,(dvx/dt) and 
m3,a(dvll/dt) are the transverse and longitudinal components of dp/dt, we 
can write 

where 

and 

A~ = A~b x + Ad?ll (2.10) 

A(dp  /at) 
Aq~• = hv (2.11) 

E( dPll/ dt) (2.12) 
A~, - hc 

It can be easily verified that (2.10)-(2.12) follow also from (2.8) and from 
the more general relation (2.6) so that they are valid for massless particles 
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and tachyons as well. When p~=  m v  a, m being a nonzero constant, (2.11) 
is the same as (2.1). Thus we have derived (2.1) as well as the new relation 
(2.12) which gives the phase shift due to longitudinal acceleration (Fig- 
ure 2), from (2.2). Thus (2.2) is a covariant generalization of (2.1). 

As an example consider the electromagnetic field Fob for which the 
phase shift is 

e ab (2.13) Adp = -f~ Fab do 

which is the covariant formulation of the Aharonov-Bohm effect for an 
infinitesimal interference loop. It follows from (2.13), (2.2), and (2.3), on 
remembering (2.4) and using the arbitrariness of the direction of u a, that 

e 
Ds = Ffft~b (2.14) 

which is the Lorentz force law. Conversely, from (2.14), on using (2.2) and 
(2.3), we can deduce (2.13). 

3. AHARONOV-BOHM EFFECT, MAGNETIC MONOPOLES,  
AND PATH INTEGRALS 

In the end of the last section we showed that according to the 
correspondence principle (2.2), the infinitesimal Aharonov-Bohm effect 
(2.13) is equivalent to the Lorentz force law (2.14). The six components of 
the electromagnetic field Fab that are known to exist are, in this view, to be 
associated with the six components of an arbitrary surface element do ab. 
Indeed the requirement that the phase shift Aq, be a scalar, dependent on 
do ab, implies that the simplest local interaction a particle can have is with a 
skew symmetric rank-2 tensor field F~b. We shall continue to refer to F~  as 
the electromagnetic field even though it does not have to satisfy the usual 
Maxwell's equations corresponding to the absence of magnetic monopoles. 
But we shall show in this section that it is easy to give a prescription for 
constructing the wave function for a spinless particle undergoing this 
interaction, provided Fab satisfies a condition which is equivalent to 
Dirac's quantization rule for magnetic monopoles. 

do ab in (2.13) is infinitesimal, whereas in reality, the area of a surface 
spanned by the interference loop will be finite. Given such a surface S, 
divide it into tiny areas S~ (Figure 4). Let Aq~ denote the phase shift for 
quantum interference around S~ and define A~s-----Y~ A~.  In the present 
case, using our correspondence principle and the Lorentz force law, Aq~ is 
given by (2.13) for an infinitesimal area S~, as shown earlier. So, as the 
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S 

C 
Fig. 4. A surface S spanned by an interference loop can be divided into infinitesimal surface 
elements S~. The relationship between the phase shift for an interference experiment around 
S and the phase shifts for those around S~ is given by assumption A. 

number of areas S~ tend to infinity while the dimensions of the areas tend 
to zero, we obtain 

Aq~ = ~-~ FabdO "b (3.1) 

A reasonable assumption that may give the phase shift Aq~ in interference is 
A~ = A~s. But the position of interference fringes are determined by e ia~. 
So a more general, experimentally verifiable assumption, is the following. 
Assumption A: Let Aq~ be the phase shift due to an external field for 
quantum interference around a loop 7- If S is any surface spanned by y, 
then e ia~' = e iaeps, where Aq~s was defined in the paragraph preceding (3.1). 

Assumption A together with (3.1) is the Aharonov-Bohm effect. The 
experimental confirmation of this effect (Chambers, 1960), can therefore 
be regarded as evidence for assumption A and the correspondence princi- 
ple which gave (3.1) from the Lorentz force law. Now let S' be another 
surface spanned by 3'. Then by assumption A, e ga*` = e ia~s', or equivalently 

e f s  Fabd 0 ab = 2~rn, n = integer (3.2) ACs-Aq's'= ~ us '  

where S to S' represents the closed surface formed from S and S'. By 
generalized Stoke's theorem 

l fxos f~bdoab= l fve~b~aV df~dV~= f~r*j~dV~ 
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where V is the volume enclosed by S tA S' and ,ja is the "magnetic 
current" defined by the generalized Maxwell's equations: 

1 a b c d ~  , - ,  A , . a  
e Vdrbc =,~Tr j (3.3) 

On defining the "magnetic charge" g = f v * j a d V ~  (3.2) therefore reads 

nh 
n = 0, __- 1 .. . .  (3.4) eg = -~-  , 

which is Dirac's quantization rule (Dirac, 1931, 1948). 
To understand the physical meaning and implications of assumption 

A, it is necessary to consider the meaning of A~. It is sometimes stated that 
only e ia* and not A~ can be measured experimentally. This statement, 
however, needs to be qualified, as we shall see now. Suppose an inter- 
ference experiment is done, first in the absence of an external field, which 
is then gradually "turned on." The phase shift Aq~, which in the absence of 
the field may be made zero by definition, will gradually increase in 
magnitude. By observing the shift in the interference fringes, since the 
process is a continuous one, A~ can be measured. Thus even though at any 
given instant only e iA~' can be observed, the knowledge of the history of the 
system provides a definite prescription to obtain A~ at least in special 
cases. 

As a specific example, consider an interference experiment with elec- 
trons in which the interference loop y is in the X-Y plane of a Cartesian 
coordinate system 0 X Y Z. S and S' are two surfaces spanned by 3' such 
that the origin 0 is inside the closed surface formed from S and S'. 
Suppose that y is far removed from other charges (or is shielded by a 
conductor) so that the electromagnetic field in its vicinity is zero. The 
phase shift A~ is then zero by definition. Now suppose that a particle with 
magnetic charge g with its initial position very far away from 0 on the 
positive z axis is gradually brought towards 0 along the z axis. Alterna- 
tively, the electromagnetic field can be literally turned on by creating a 
monopole antimonopole pair and bringing the monopole towards 0. Now 
S and S' can be divided into infinitesimal surface elements S~ and S i ;  let 
A~, A~ denote the phase shifts in interference experiments around these 
surface elements, due to bringing g towards 0. A~, A~, A~ are experimen- 
tally measurable as described in the previous paragraph. Hence A~, A~----- 
Y.~ A4~ and A~s,~ ~a  A~ are physically meaningful quantities since they 
can be determined by a well-defined operational procedure. 

The electromagnetic field F~b can be determined operationally using 
(2.13). This can be done more generally even when the history of the 
charges producing the field is unknown, by assuming that the magnitude 
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of phase shift is less than er for an infinitesimal loop and thereby eliminate 
the ambiguity associated with adding an integer multiple of 2~r. Alterna- 
tively F ab can be determined using (2.14) in the classical limit. Once F ab is 
determined, notice that the magnetic charge considered here, by definition, 
satisfies (3.3). We shall not, however, assume now that g satisfies (3.4). It 
follows from (3.1) and (3.3) that when g is outside the closed surface, 
Aq5 s =A%,. It is reasonable now to assume that A~=A~s =A~s, which is 
experimentally verifiable if magnetic monopoles exist. Before g reaches the 
origin, it crosses one of the two surfaces, say, S' .  Suppose S,~' for some ct is 
the surface element that g crosses. Then there will be sudden change in Aft" 
according to (2.13), and consequently such a change will also occur in Aq~s,. 
But no such sudden change will occur in A~ or A~. So when g is inside the 
closed surface we should have Ad~=A~=/=Aqs~,. When g is at the origin, 
Aqs=Aep~ =2~reg /h ,  AqS~,=-2r because of (3.3) and (3.1). If g con- 
tinues its journey and crosses S as well, then Aq~:~A~,, Aep=/=Aff~,, in 
general. But if g is pulled back to 0 again along the Z axis, then 
Ae~ = Aep, = 2r  again. Suppose that the experiment is repeated, this time 
with g initially at a very large distance away from 0 along the negative Z 
axis. If g is brought to 0 along the Z axis, by a similar argument, 
Aep = Ae#~, = - 2 ~ r e g / h ,  Ad?s = 2r T h e  difference in the values of A~ for 
the two ways in which g is brought to 0 is one way of realizing the fact that 
magnetic monopoles violate reflection symmetry. If we require reflection 
symmetry of course, magnetic monopoles cannot exist (g  in above experi- 
ment should be zero). But on the other hand if magnetic monopoles exist, 
thus violating reflection symmetry, it is not a priori  necessary that the 
position of the interference fringes for the two cases considered above 
should be the same. Although in both cases g is at 0 during some time 
interval when the interference fringes are being observed, the result of the 
experiment could depend on the history of g.5 If the possibility of some 
nonlocal interaction that will make the positions of the interference fringes 
dependent on the history of the charges producing the field, is excluded, 
then we must have e;a~,=e ia~,', which leads to Dirac's quantization via 
(3.2). This provides a physical meaning to assumption A. 

If magnetic monopoles do not exist, then always A~= A~ = A~, and 
the distinction between these quantities is unnecessary. Assumption A is 
the simplest generalization of this situation to include magnetic monopoles, 

SThis implies that the quantum mechanical motion of a test particle in the field of g can 
depend on the history of g. But it is interesting that the equation of motion in the classical 
limit will be independent of the history of g, according to our assumptions. This can be seen 
from (2.2) and the fact that the infinitesimal phase shift Aep in this equation will be 
independent of the history of g (A~k~O as d o ~ 0 ) .  
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which must then satisfy Dirac's condition (3.4). Physically this generaliza- 
tion represents the requirement that the predicted shift in the interference 
pattern due to the Aharonov-Bohm effect must be independent of which 
surface S is being considered, even in the presence of magnetic monopoles. 
We have shown that further generalizations that permit violations of (3.4) 
are possible, but they require more complicated nonlocal interactions 
between magnetic and electric charges. 

The derivation of (3.4) given here is analogous to that of Dirac (1931), 
but is more general because it was done in curved space-time. The usual 
derivation of the Aharonov-Bohm effect assumes the existence of a vector 
potential A a such that F,, b = VtbA,,  1. But if this is true in any neighborhood 
then Maxwell s equations e"bcaVaFbc=O must be valid in that neighbor- 
hood. Dirac showed that by introducing line singularities in A a, the more 
general equation (3.3) will hold provided the subsidiary condition (3.4) is 
imposed to ensure consistency with quantum mechanics. In our derivation 
of the Aharonov-Bohm effect, however, the vector potential Aa was not 
needed. Instead we used the correspondence principle (2.2), which gave 
(2.13) directly in terms of the observable field F,, b from the classical 
equation of motion. We needed the skew symmetry of F ab but did not 
require that F ab satisfy Maxwell's equations. This enabled our derivation 
of the infinitesimal Aharonov-Bohm effect, to permit the existence of 
magnetic currents. The further assumption A then yielded the experimen- 
tally observed Aharonov-Bohm effect and the Dirac's quantization rule 
(3.4). The latter, therefore has also been obtained entirely in terms of the 
observable Fab and avoids altogether the use of the vector potential A~. 
Hence we do not have the problems associated with the singularities of Aa 
which confronted Dirac. 6 In this respect, this derivation is similar to that of 
Cabibbo and Ferrari (1962). But it has the advantage that it will now lead 
to a well-defined wave function, unlike the path-dependent wave function 
used by these authors, by means of a procedure very similar to that of 
Feynman (1948). 

Let {'rr) be the set of paths joining two space-time points x' and x, 
and S r a surface spanned by a fixed path ~'l and 3'r (r includes 1) in a 
simply connected region. The Aharonov-Bohm effect and Feynman's 
"democracy of all paths" suggest that the amplitude for a particle with 
electric charge e to go from x' to x is 

ie f FJoab], r /~(x,x ' )~  ~ exp( ~-~ s, / (3.5) 

6A method of avoiding singularities in A a has been given by Wu and Yang (1975) in the 
integral formalism of electromagnetism. 
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where K r are the amplitudes in the absence of the field F,, b. (3.4) is assumed 
valid so that Sr can be any surface spanned by 71 and ,/~ not containing a 
point at which F~b is singular. K(x,x') depends on the choice of Yl which 
can be determined for arbitrary x , x '  as follows. Define a field of "refer- 
ence paths" y (x) jo in ing  a fixed "reference point" x 0 to x such that y(x) 
varies continuously with x, e.g., y(x) in flat space-time can be the straight 
line joining x 0 to x; in curved space-time it can be, at least locally, a 
geodesic joining x 0 to x. Given two points x, x' ,  choose Y1 in (3.5) to be the 
curve formed by combining y(x) and y(x').  If  ~(x ' )  is the amplitude (a 
continuous function) on a spacelike surface o then the amplitude at a 
subsequent point x is postulated to be 

= f f ( x ,  dx' (3.6) 

This formalism has the advantage of using only the observable F,b. 
But it can be easily shown to be equivalent to Feynman's  formalism in the 
absence of magnetic monopoles. In this case F,, b can be written as the curl 
of a singularity free vector potential A~ and Feynman's  propagator  (1.1) is 

Now define 

(e ) K(x,x')~ ~ exp i-~ f Aadx a ~, 
~Yr ] 

v(~) 

(3.7) 

(3.8) 

Then from (3 .5) ,  ( 3 .7 ) ,  a n d  (3 .8 ) ,  

K(x,x')=exp(i h A(x))K(x,x')exp(-i h A(x ' ) )  

Therefore if 

(3.9) 

then the equation ~p(x)=foK(x,x')tp(x')dx' in Feynman's  formalism is 
equivalent to (3.6). If Fab=O everywhere, 7 then from (3.8) V a A = A  a. Thus 
in this case (3.10) is just the gauge transformation that makes the new 

7More generally, if F~ ~ 0 in a neighborhood V such that for every x ~ V, V contains 7(x), 
then V a A = A  a in V. Then (3.10) is the gauge transformation that makes the new potential 
A a - VaA vanish in V. 
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potential Aa = Aa - V a A  = 0. In general however, VaA need not exist. Thus 
~(x) though continuous, need not be differentiable and it may therefore 
not satisfy a differential equation. Nevertheless it is clear from (3.10) that 
there exists a (1-1) correspondence between the solutions of the usual 
wave equation in any given gauge and the gauge-independent ~(x) defined 
here, at least in the absence of magnetic monopoles. 

The gauge transformation Aa---)A a - - V a a ( x  ) results in the local gauge 
transformation 4,(x)~g,(x)e ie'~/h(x). But +(x) is unchanged under such a 
transformation and in this sense ~ is gauge independent. However if the 
field of reference paths ('f(x)} of the reference point x 0 is changed, the 
new wave function tp'(x) is also related to +(x) by an equation of the form 
(3.10). Hence ~'(x)= eiB(~/(x) for some continuous function fl(x), which 
need not be differentiable. 

If F ~b is due to magnetic charges in addition to possible electric 
charges, then the present formalism is inequivalent to Feynman's for- 
malism. In this case A~ must have a line of singularity through each 
magnetic charge. So Feynman's prescription for the propagator (3.7) 
requires at least that none of the paths ~'r contain a connected portion of a 
line of singularity. This requirement, for which there is no physical justifi- 
cation, is not needed in the present formalism. But on the other hand, the 
present formalism raises the difficult problem of showing that the path 
integral in (3.5) can be performed when magnetic monopoles are present, 
which is necessary in order that it be useful in this case. This problem will 
not be attempted in this paper. 

As already mentioned, to write (3.5) we needed the correspondence 
principle (2.2) and the Lorentz force law (2.14), but did not require a 
knowledge of the classical Lagrangian for the interaction between the 
particle and the electromagnetic field. This suggests that (2.2) or a suitable 
generalization of it may be useful in quantizing theories that have a 
classical equation of motion, but no Lagrangian or Hamiltonian. 

Finally, consider the case of a particle moving in the electromagnetic 
field of another particle, with both particles having electric and magnetic 
charges el, e2, gl, and g2, respectively. If the classical equation of motion 
for the first particle is taken to be the following generalization of (2.14), 

Dpa - el Fabl)b + gl*Fab% (3 .11)  
Ds c c 

where * K;'ab I abcdr:', -- = ~e red, then by (2.2), the phase shift for an infinitesimal 
interference loop is 

el ,-, ab gl 
A ~ =  - ~  l',ab 0 "t- " ~  * Fab Oab (3 .12)  
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Finally, assumption A, on using an argument similar to that which gave 
(3.4), yields 

nh 
e lg2 - -e2g l=-~  - , n=O, + 1,... (3.13) 

which is the generalization of (3.4) for the more general case being 
considered here. (3.13) can also be regarded as the duality-invariant way of 
expressing (3.4), the absence of magnetic monopoles corresponding to the 
ratio e / g  being the same for all particles. (See, for instance, Jackson, 
1975). Also (3.5), for a particle with electric charge e and magnetic charge 
g, is given by 

K(x ,x ' )=~/exp(~fsr (eFob+g*Fab)daab)Kr  (3.14) 

It is clear from the above discussion that (3.5) can be generalized to 
any gauge field corresponding to an Abelian gauge group, since assumption 
A, formulated at the beginning of this section, is valid in this case. We now 
consider cases for which assumption A is not applicable or not valid: First 
of all, in a multiply connected region R, it is not possible to find a surface 
spanned by every closed curve ~, which lies entirely within R. For 
instance, in the original experiment discussed by Aharonov and Bohm 
(1959), we may choose R to be the region outside the cylinder containing 
the magnetic field. If one is not permitted to look inside the cylinder than 
one cannot obtain the phase shift for this experiment by the use of 
assumption A. Hence it is clear that in a multiply connected region we 
must replace exp(ie/2hfsFabdo ab) in (3.5) by exp(ie/2hfrr,Aadxa), where 
F r is the closed curve formed from Yl and Yr- 

Consider now, as the external field, a gauge field corresponding to an 
arbitrary gauge group G having generators T~. The classical equation for a 
particle in this field is 

D p  a 
Ds = "riFiab Vb (3.15) 

where Fab is the gauge field strength and ~'i are the gauge parameters of the 
particle (e.g., isospin). This is the generalization to curved space-time and 
arbitrary gauge field of the equation, considered by Wong (1970), for the 
SU(2) gauge field. It follows from (3.15) and the correspondence principle 
(2.2), (2.3) that the phase shift due to the field infinitesimally is 

c 
A q~ = - ~  ~'i F'ab do '~ (3.16) 
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Now we cannot use the analog of assumption A to obtain the phase shift 
for a finite interference loop, when G is non-Abelian, because such an 
assumption is not valid for this case. This is because, in this case, e ;a* for a 
given finite interference loop cannot be written as exp(iY~ Afro), where A~,, 
is defined above (3.1). But it is shown elsewhere (Anandan, 1979) that the 
phase shift in interference due to an arbitrary gauge field, under certain 
conditions, is determined by an operator of the form 

�9 i7~ X a O(exp(tcvAa i d ))  (3.17) 

where A / is the gauge potential, O denotes path ordering, and the integral 
is along a closed curve y beginning and ending at a point in the inter- 
ference region. It is therefore reasonable to suppose that the generalization 
of (3.5) to an arbitrary gauge field is 

t �9 i a K ( x , x  ) ~  ~, Oexp(t~rrAaTidx )x~ (3.18) 
I" 

where F r is the closed curve formed from "h and "/y, xy (an operator) is 
associated with the curve "5 (joining x' to x) in the absence of the gauge 
field, and T i provides the representation of interest of T v The evolution of 
the wave function is determined as before by (3.6). 

It was pointed out by Wu and Yang (1975) that the field strength of 
an SU(2) gauge field does not have all the gauge-invariant information of 
the field, in general, because it is possible to have two gauge-inequivalent 
SU(2) gauge potentials which have the same field strength. This raises the 
question of whether the operators (3.17) associated with closed loops -/, 
which determine the phase shift, contain all the gauge-invariant informa- 
tion about the gauge field. We answer this question affirmatively in the 
Appendix by showing that two gauge potentials corresponding to an arbi- 
trary gauge group are related by an active gauge transformation if and only if 
the path-ordered operators (3.17)for the two gauge potentials, associated with 
each curve y beginning and ending at an arbitrary (but fixed) point, are 
related by a constant similarity gauge transformation. It follows that, when G 
is non-Abelian, in general it is not possible to go from the classical 
equation of motion (3.15) to the quantum theory as we did in the Abelian 
case, even in a simply connected region, because (3.15) depends on the 
field strength, whereas (3.17), which is needed for the quantum theory, has 
more information, in general. These remarks also show the importance of 
interference in operationally defining a gauge field: From the response of 
the energy-momentum of a classical test particle to a gauge field we can 
determine, via (3.15), only the field strength, which, however, does not 



5 5 4  A n a n f l a n  

contain all the gauge-invariant information about the field, in general. The 
"isospin" ~'i is covariantly constant along the classical trajectory. So from 
its motion, the adjoint representation of the operators (3.17) can be 
determined. But in general, this also does not have all the gauge invariant 
information of the gauge field. It is interference that enables us to 
determine the holonomy group consisting of elements of the form (3.17), 
which contains all the gauge-invariant information about the field, accord- 
ing to the above theorem. 
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APPENDIX: GAUGE FIELDS, GRAVITY, AND H O L O N O M Y  

In this section we shall state and prove a theorem which contains, as a 
special case, the theorem stated in the last paragraph of Section 3. It is 
convenient, for this purpose, to regard a gauge field as a connection in a 
principal fiber bundle over space-time. It will be assumed that the reader is 
familiar with this description, 8 which also has the advantage that the 
theorem, when stated in this language, is readily seen to apply to the 
gravitational field connection as well. 

Let P(M,G) and P(M, G) be two principal fiber bundles over base 
manifolds M, M with structure groups G, G whose right actions are 
denoted by Ra(a ~ G) and Rb(b E G). A homomorphism f:  P(M,G)---~ 
P~(M, G) consists of a differentiable map f ' :  P---~ff and a homomorphism 
f": G---~G such that f'Ra= Ry,,(a)f' for every a E G. A homomorphism f is 
an imbedding if f '  is an imbedding and f "  is (1-1). For simplicity, f '  and 
f "  are sometimes denoted by the same letter f. 

Theorem. Let P(M, G) and P(M, G) with projection maps ~r and ~? 
have connections F and F, respectively. Then there exists an 
imbedding f:  P(M, G)---~P(M, G), which maps F into F if and only 
if there exists a differentiable map h: M---~/~r and for any x E M 
there exists a (1-1) differentiable map g: ~r- l(x)---~?- l(h(x)) and a 
(1-1) homomorphism g': G---,G such that (i) gRa = Rg,(a)g for every 
a ~ G and (ii) for every curve 3'x, beginning and ending at x, 

- 1 ~ g ,  "Yx =g "~h(x) where 7~ and qh(~) are,  respectively, the holonon- 
omy transformations in P(M, G) and P(M, G) associated with the 
connections F and F, corresponding to the closed curves u and 
~h(x)~h(3,x)['~h(x) is the image of 7x under h and it is understood 
that the domain of g -  1 is g(Tr- l(x))]. 

8See, for instance, Kobayashi and Nomizu (1969). 
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Proof Suppose there exists a n i m b e d d i n g f :  P(M, G)--+P(M, G) which 
maps F into I'. Define h: M - ~ M  to be the map  induced on M by f.  
Consider any x E M and a curve 3' beginning and ending at x. Define 
g=fl=-'(x). Now f maps horizontal curves in P(M,G) into horizontal 
curves in P(M, G). Since the holonomy transformations 3,.;, or "Yh(~) are 
defined by horizontal lifts of 7x or Yh(:,) with respect to F or F, respectively, 
it follows immediately that `ix =g-~Yh(~)g. 

Conversely, suppose that there exist differentiable maps h: M---~3~r, g: 
it-l(x)---~(r-l(h(x)), for some x ~ M, and a (1-1) homomorphism g' :  G---> G 
such that gR a = l~g,(a)g for every a E G and "tx = g -  l'~h(x)g for every curve y 
beginning and ending at x, where yh(~)=h(Yx). Denote h(x) by )~(x E M). 
Now define fP: P-->P in the following way: For every y E M, let y,:y be a 
curve joining y to x and "~ff be the image of this curve under the map  h. 
Let `i~y and Y,V denote the parallel displacement along Yxy and ~ff with 
respect to the connections F and ]~, respectively. Define f '  by f'l,~-,(y) = 
"Y~gg`i,o, ( y E M ) .  It  is easily verified that ft[~r~l(y) is independent of the 
chosen curve y~ jo in ingy  to x so t h a t f ' :  P-->P is well defined. Also 

t ~ - - 1  ~ - - 1  f Ra [,r-'(y) = ì~r g`i,,y Ra 1~-'(~,) = `i;~ gRa`im [~-'(y) 

- - 1  ~ _ _  ~ p ---- Rg,(a~f I~-'(y) v~ Rg,(.)g`i~l.~-,(y)- 

for every y E M and a E G. Therefore, on defining f "  = g', f 'R~ = Ry,,(,)f.~ " 
T h e  maps f '  and f "  therefore constitute an imbedding f :  P(M,G)--~ 
P(M, G). 

Finally, let Yzy be an arbitrary curve in M joining y E M to z E M. 
1 ~ . ~  ~ - - 1  - - 1  Then by supposition, g - ` i ~  ff`i~g=`ixz`izy`ixy, i.e., "?ff'~lg`ixy--- 

"~:T]~g`i~zy,y, which is the same as "~fff' =f'`i,y. Therefore f maps horizontal 
curves of P into horizontal curves of P. Hence f maps F into F. This 
completes the proof. [] 

Consider now the special case when P = fi, M = 31, G -  G, and ~r = ~?. 
Then in the above theorem f:  P(M, G ) ~ P ( M ,  G) is an isomorphism. If in 
addition f preserves each fiber then h: M--->M is the identity map, g and g '  
are automorphisms, and the curves Yx and ~Th(x) are the same. Also if M is 
space-time then F and I" may  be regarded as gauge field connections. Then 
f represents an active gauge transformation while g is an active gauge 
transformation at a point. Under  these conditions, the above theorem is 
then the same as the theorem stated at the end of Section 3. 9 Also if 

9As a simple illustration of this theorem consider the Wu-Yang copies referred to in the last 
paragraph of Section 3. It is easy to verify that these two potentials have as their holonomy 
groups SU(2) and U(I). It then follows trivially from the above theorem that they must 
therefore be gauge inequivalent. 
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P ( M ,  G)  is the b u n d l e  of f rames  on  M then F has  the in t e rp re t a t ion  of the 
grav i ta t iona l  f ield connec t ion .  A necessary  a n d  suff icient  cond i t i on  tha t  
there  exists a Loren tz i an  met r ic  c o m p a t i b l e  wi th  this connec t ion  (i.e., the 
covar ian t  der ivat ive  of the met r i c  wi th  respect  to this connec t ion  is zero) is 
tha t  the h o l o n o m y  group  is a subgroup  of the Loren tz  group.  
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